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Software Development for P Switch-based Data Acquisition System 

Alexaodcr Booth’, Dennis Black & Don Walsh 
Fermi National Accelerator Laboratory** 

Abstract 

We report on the software aspects of the development 
of a switch-based data acauisition svstem at Fermilab. Tkis 
paper describes how. with the goal of providing an 
“integrated systems engineering” environment. several 
powerful software tools were put in place to facilitate 
extensive exploration of all aspects of the design. These 
t&s include a simulation package, graphics package and an 
Expert System shell which have been integrated to provide 
an environment which encourages the close interaction of 
hardware and software engineers. This paper includes a 
description of the simulation, user interface, embedded 
software, remote procedure calls, and diagnostic software 
which together have enabled us to provide real-time control 
and monitoring of a working prototype switch-based data 
acquisition (DAQ) system. The prototype DAQ system is 
capable of running at 600Hz of current CDF events 
@OKbytes). and comprises several VME Sun 1E boards, 
as well as the switch backplane and auxiliary components. 

1.0 Introduction 

With the ever-increasing complexity of detectors and 
their associated data acquisition systems, it is important to 
bring together a set of tools to enable system designers, 
both hardware and software, to understand the behavioral 
aspects of the system as a whole, as well as the interaction 
between different functional units within the system. For 
complex systems, human intuition is inadequate since there 
are simply too many variables for system designers to 
begin to predict how varying any subset of them affects the 
total system. On the other hand, exact analysis, even to the 
extent of investing in disposable hardware prototypes, is 
much too time consuming and costly. Simulation bridges 
the gap between physical intuition and exact analysis by 
providing a learning vehicle in which the effects of varying 
many parameters can be analyzed and understood. 
Simulation techniques have been used in the development 
of the Scalable Parallel Open Architecture Data Acquisition 
System at Fermilab. This paper describes the work 
undertaken at Fermilab in which several sophisticated to& 
have been brought together to provide an integrated systems 
engineering environment specifically aimed at designing 
DAQ systems. 

At Fermilab, the Scalable Parallel Open Architecture Data 
Acquisition System [l] project was directed at addressing 
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the needs of future High Energy Physics (HEP) 
Experiments which require much greater bandwidth than 
those of previous era’s, A protoypc data acquisition system 
(figure 1) has been implemented. It consists of eight test 
transmitters (which emulate the front end electronics) and 
transmit their data to eight Input Time Slot Interchangers 
(TSI). which buffer the data before feeding it into the 
switch. Eight Output TSI’s receive data in parallel from 
the switch and send complete events onto a farm of 
processors (emulated by the output TX’s in the prototype 
system). 
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Eitwe ’ prntotvoe 
From the outset of the project a goal was to provide an 

integrated systems engineering environment in which 
hardware and sofhvare development could proceed in parallel 
and actually complement one another. To achieve this, it 
was necessary to bring together a set of tools which would 
not only allow extensive exploration of all aspects of the 
design, but also provide building blocks that encourage the 
close interaction of software and hardware engineers. This 
approach had the advantage that valuable information was 
constantly being communicated between hardware and 
software groups during the development process. 

The powerful tools which were set in place included a 
digital logic simulator and Computer Hardware 



Description Language (CHDL), a high-speed graphics 
package and a knowledge-based expert inference system, all 
running on a powerful work station. Figure 2 shows how 
their integration was viewed fmm the developer and the 
user. Although all of these tools are very useful when used 
in isolation, their combined effect is even more powerful 
and versatile. For example, in order to configure. download, 
monitor and diagnose the “model” of the data acquisition 
system. a user interface was developed which 
accommodated these functions in a very friendly way. The 
requirements of this interface were in many cases identical 
to those of downloading. monitoring, and diagnosing the 
data acquisition system of an actual physics experiment. If 
the model is an accurate representation of the actual system, 
then everything that a user would like to do to the system, 
he would also like to do to the model. Therefore, as the 
model was developed, the actual software used to help run 
the experiment was also developed in parallel in an 
integrated fashion, thereby providing a universal interface 
accomodating the model and the “real” system. 

USER ENVIRONMENT 

DEVELOPMENT ENVIRONMENT 

Another example of integrated systems engineering is 
the development of system diagnostics and their integration 
into the hardware design during the simulation process. 
Good systems diagnostics are crucial for minimizing 
downtime in a running experiment. In order to diagnose 
something, it helps to understand it. Before any hardware 
was actually built, diagnostic strategies were being 
designed and tested. 

2.0 Tools 

2.1 Verilog 

The fust tool we chose was Veriolog -XL [31, which is 
a digital logic simulator based on the computer hardware 
description language Verilog -HDL. It provides advanced 
simulation capabilities designed to handle complex 
electronic designs. It has many features which can be 
summarized as follows:- 

(i) Different levels of abstraction; 
system/architectural, behavioraValgorithmic 
register transfer. gate/circuit 

(ii) Mixed level modeling 
(iii) Stochastic analysis 
(iv) Interactive debugging environment 
(v) Open Design Envimnmenr library support, 

programming language interface (C. etc.) 

These features make Verilog very useful for modeling 
data acquisition systems, even those which include multiple 
ASI0 and complex VLSI devices. Verilog has already 
been used successfully in the HBP community [4]. Verilog 
provides three kinds of graphical display; fmstly a logic 
analyzer type display which is very useful for low level 
debugging. secondly a register display where the 
programmer can display tbe value of any variable or register 
in his HDL code, and thirdly a bar graph display for 
showing such things as queue occupancy and owflows in 
the stochastic/queue management type modeling. 

2.2 DataViews 

The next tool we chose was Dataviews [5], which is a 
powerful graphical design environment for developing 
custom color displays for real-time monitoring and control. 
This is a very important aspect of the Scalable Parallel 
open Architecture Data Acquisition System; that the “User 
Interface” be state-of-the an. Dataviews is written in C and 
runs on most 32-bit workstations. It comprises two main 
componenta: a powerful drawing editor called DVdraw, and 
a comprehensive set of utilities called DVtools. DVdraw 
enables users to create and modify color pictures, and in OUT 
case these were system type diagrams of our user interface 
as wells as menu driven displays for user interaction. 

DVtools allows the user to specify the dynamic 
interactions of all components on each screen and between 
screens, as well as how to integrate the displays into user 
application programs. We have also used Dataviews to 
“front-end” Verilog, so that the infrequent user of Verilog 
can come along and set up parameters for a simulation mn 
in a user friendly way, without having to know Verilog 
HDLcode. 

2.3 Nexpert 

The third tool we chose was Nexpert [6] which is a 
powerful “knowledge representation and reasoning” system. 
It includes a rule and “object-oriented” expert system she11 



and was particulary attractive to us for three reasons; frstIy 
it meets some goals we have in terms of diagnosing data 
acquisition systems, secondly it includes a unified database 
bridge which interfaces to a variety of database packages, 
and thirdly it has a software bridge to Dataviews. This last 
feature was very attractive to us since the bi-directional 
relationship between Nexpert and Dataviews means that by 
clicking on buttons on a Dataviews “view”. rules fire which 
can cause for example, other programs to be invoked (such 
as reading status registers in the DAQ system), and even 
other “views” to be displayed (such as a lower level in the 
DAQ system). 

3.0 Software Development 

With the tools in place, there were five main areas of 
software development; simulation, diagnostics, embedded 
ccde,usw interface and remote procedure calls. 

The software effort was completely done on a SUN OS 
4.0.3 based platform. The main programming language was 
C with a small amount of spare assembler code. The 
following tools provided by SUN were also used; compiler, 
linker, “vi” text editor, dbx source level debugger.and the 
rpc generator utility(rpcgen). The amount of code generated 
was approximately 5oooO lines and is broken down into the 
following main areas: 

a. user interface, DVTOOLS programs. not views 
(2OCW lines) 

b. simulation code - various models (looo0) 
c. embedded code, for all modules (4COO lines) 
d. rpc ,server and client calls (1201X1 lines) 
e. diagnostic software - consisted of some code already 

accounted f0r.i.e. status,rpc. a general number for 
the decision trees was (2000 lines) 
(this was only implemented to a very small degree). 

f. code to generate look up tables etc. (Zoo0 lines) 

The SUN OS has the facility to generate the remote 
procedure calls easily through the use of the rpcgen utility. 
This facility allowed us to write the user programs that 
were to be activated over the network without having to 
worry about the network pmtccol or operations. 

3.1 Modeling & Simulation 

The purpose of writing models and simulating the 
switch-based Scalable Parallel Open Architecture Data 
Acquisition System was to provide a learning vehicle 
whereby the system designers could experiment with 
different architectures and control mechanisms to enable 
them to better understand DAQ design. An improved 
understanding simplifies decisions such as which operation 
mode provides for highest throughput, what extra 
electronics and software should be. implemented to more 
efficiently diagnose failures and fix problems, etc. 
Modeling and system simulations assist system designers 
in determining throughput for different configurations, 
identifying potential bottlenecks, interfacing to “physics 
data” simulations, identifying busiest channels, selecting 
proper buffer sizes, determining the number of processors 

and processing power required, determining data rates. and 
many other decisions which are normally made using 
analytical calculations or intuition. 

At the outset of the simulation experiments the goals 
of the exercise were spxified clearly:- 

a) to develop simulation models of the following 
functional sub-units of the switch-based DAQ system:- 

(i) trigger system interface 
(ii) test transmitter module 
(iii) switch 
(iv) switch control 

$) 
input time slot interchanger 
output time slot interchanger 

b) to develop a “system” model of an 8 by 8 switch 
architecture, using each of the above functional sub- 
components 

c) to observe the behavior of the “system” model as 
well as each of the functional sub-units when varying 
certain subsets of the following parameters:- 

;;) @klw rate 
event distribution over switch output channels 

(iii) event size 
(iv) buffer depth in the input TSI’s 
(v) buffer depth in the output TSI’s 
(vi) switch packet size 
(vii) test transmitter to input TSI data transmission rate 
(viii) input TSI to switch data transmission rate 
(ix) switch to output TSI data transmission rate 

d) to perform analyses and produce meaningful results in 
terms of summary plots and printouts 
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The results of the simulation experiments have been 
repotted elsewhere [71, and so we shall not include them 



here. However. one interesting plot worth including here is 
one that shows the degradation of the switch when events 
are distributed unevenly over output channels instead of on 
a round robin basis. The plot shows how much more the 
buffers overtlow in the TSI’s when events are disbibuted 
unevenly. 

3.2 Diagnostics 

In the context of diagnosing a switch-based data 
acquisition system, we desire to narrow the problem down 
to a particular functional sub-unit as quickly as possible. 
To accomplish this goal it was important that there he 
some form of error detection facility built into the design, 
however minimal. The switch project allowed for error 
detection by the use of a set of diagnostic buffers which 
were periodically checked by the system monitor to see if 
any errors had been encountered. 

Once an error was detected a fact gathering process tcmk 
place, followed by a series of questions leading to a 
conclusion about the possible origin of the error. To 
enable an organized method of data gathering. question 
asking and eventually decision making we implemented a 
ruled based knowledge system using Nexpert. This system 
allowed a series of decision trees ( generated from the 
knowledge elicited from the hardware designers during the 
knowledge acquisition process) to be implemented in 
software so that the system could pinpoint the most 
probable origination point of a particular error. 

Because of the bridge between Nexpert and Dataviews. 
integration of the diagnostic facility into the existing user 
interface system was easy and quick. Questions are asked 
via the RPC mechanism and rudimentary deductions are 
made. For example, to determine if a problem originates 
before the switch or after the switch, the following sequence 
of steps would take place: 

1. An error was detected by the embedded code resident 
on one of tbe modules. The embedded code was responsible 
for updating status registers that were located in local dual 
pated memory. 

2. The system monitor. through the local monitors, are 
periodically polIing each module and reading the rcsptive 
status registers. The error is detected by the system monitor 
which notifies the operator of the error condition. 

3. The operator receives a error message through the 
user interface, and then activates the diagnostic 
system,which is fully integrated into the user interface. 

4. The diagnostic system, which has the error, starts 
working its way tbru the decision trees that were earlier 
defined. The decision trees offer a path through the different 
modules.The different modules are polled, only as needed, 
and the diagnostic system starts narrowing the list of 
possible originators of the error to a small subset. 

5. The operator is then notified of the most logical 
place to start tmubleshcoting. The expert system is able to 
diagnose down to the board level. 
If all nodes are “seeing” the problem, then the problem is 

probably pre-switch or on the input to the switch itself, 
whereas if only one channel is experiencing a problem (hen 
the problem is post-switch or on the outputs of the switch 
itself. Either way this simple rule has performed the fist 

“binary chop” on our total DAQ system. At present. this is 
the least developed part of the project, but still remains a 
positive area for investigation and development. 

Another possible path to error correction is the use of 
the diignostic buffers that were included at the design phase 
of the modules. These diagnostic buffers could be used to 
look at the history of events that have been passed through 
each module. The system included a way of selectively 
dumping, into the diagnostic buffers, only header 
information or all information including data. 

3.3 Embedded Software 

The embedded software was meant to be fast and 
efficient. There was no need for a real-time operating 
system to be installed on the modules, mainly because there 
was to be only one task running. The embedded code for all 
modules included a set of common functions: 

a. boot program 
h. downloading 
c. message protocol over vme 
d. status,for diagnotic purposes 

The same executable code for these cOrnmoo functions 
was downloaded to each the same type modules thereby 
reducing unnecessary duplicate development. Very little 
information was downloaded for configuration purposes 
simply because much of the information needed to transfer 
dam through the system is carried along with the data. 

3.3.1 Embedded code on specific boards 

Test Transmitter boards: main purpose was to simulate 
a front end sub-detector system. The embed&d code on this 
board included functions to generate a set of data that was 
to flow through the system, with the basic header 
information that the system needed to route the event 
fragments to the proper destination level 3 farm processors. 

Trigger System Interface (TRW) board: act as the 
tigger supervisor combined with the trigger system. The 
embedded code on this board would generate the bigger and 
notify the test transmitters as well as the input TX’s at 
predetermined time intervals. This triggering rate could bc 
changed dynamicalIy via the message passing protocol from 
the system monitor. 

Input TSI boards: this module received the event 
fragments f?om the Test Transmitters and fed them into the 
switch on a packet by packet basis. The embedded code on 
these boards was responsible for checking headers. receiving 
trigger information and routing the data into the correct 
buffers io preparation for “switching”. 

Output TSI boards: this module received the event 
fragments from the switch and fed them into Ihe appropriate 
buffez in preparation for transmission to the level 3 farm as 
a complete event. The embedded code on these boards was 
responsible for sending the data, buffer by buffer, to the 
level 3 farm (“event-building”). In our system the output 



TSI also simulated the level three processor farm, which 
required the maintenance of the event request link. 

3.4 User Interface 

The graphical user interface was developed to allow a 
non-textual representation of the system,which we felt was 
more intuitively understood. The interface was developed 
using the graphic package DATAVIEWS. This package was 
C based and consisted of two major areas of effort, 

The look of the view itself was done using DVDRAW. 
This allowed the developer to actually see the way the view 
would look ,attach variables to the view and allow the 
developer to see the layout of the view easily. 

The view was controlled by a C program that was 
responsible for drawing,updating and destroying each 
view.This programming control is the DVTOOLS portion 
of Dataviews. It allows a connection between the view and 
the remote procedure call system,which collected 
information from the real DAQ system or the simulation 
system. 
- 
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Through use of a mouse the user could jump thm the levels 
of view and quickly get an image of the system,while the 
system was running. The user was also able to change 
parameters, reset the system, and examine status statistics. 

The graphical user interface was hierarchical in design 
and implementation. The top view allows the user to select 
such operations as simulations or system software, or to 
reconfigure the system. Through use of the mouse or 
keyboard the user could change parameters and send the 
information to the system from tbe selected view. 

The development of the User Graphical Interface was 
started well before the design on many of the modules was 

complete. This was possible because the system could be 
designed.tested. and debugged using tbe simulation model as 
a “true” system. 

3.5 Remote Procedure Calls 

The remote server and client programs used to write and 
read from the SWITCH DAQ system were compiled and 
linked with the skeleton XDR routines produced from a 
program definition fde that was compiled with rpcgen. The 
client and server stub routines interface with the RPC 
library and effectively hide the network from the calling 
programs. Several remote procedure calls were written for 
initializing the SWITCH DAQ system by downloading the 
embedded code, lookup tables and initialization of local 
variables. Other programs make client calIs to read from the 
various parts of the system for data display and diagnostics. 

Conclusions 

The prototype switch-based DAQ system has met the 
performance objectives, both in terms of hardware and 
software. In terms of integrated systems engineering, this 
project has demonstrated the importance of having powerful 
tcols and integrating them properly in order to ensure wise 
design decisions are made at all phases of the development. 
There is still a long way to go. but the goal of having 
reliable DAQ systems in HEP experiments of the future 
looks reachable. 
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